Рабочая программа по курсу предпрофильной подготовки «Нанотехнологии» 9 класс

Составил: Оськин Н.Д., учитель информатики

ПАСПОРТ

программы элективного курса

Полное наимено-	Программа «Нанотехнологии»
вание программы	Tipot pullina Wianto Texhoslor Hill
Основания для	- Федеральный закон «Об образовании в Российской Федерации» №
разработки про-	273 от 29.12.2012г.
граммы	- Областной закон Ростовской области от 14.11.2013г N 26-3С "Об образовании в Ростовской области" (принят 3С РО 29.10.2013г); - Федеральный государственный образовательный стандарт среднего
	общего образования Приказ Министерства образования и науки РФ от 17 мая 2012 г. N 413;
	- Гигиенические требования к условиям обучения в общеобразовательных учреждениях (Санитарно-эпидемиологические правила и нормативы — СанПиН 2.4.2.2821-10). Постановление Главного госу-
	дарственного санитарного врача Российской Федерации от 29 декабря 2010 г. N 189 г. Москва "Об утверждении СанПиН 2.4.2.2821-10 "Са-
	нитарно-эпидемиологические требования к условиям и организации обучения в общеобразовательных учреждениях";
Сроки реализа-	1 учебный год
ции программы	34 учебных часа (1 час в неделю)
Целевые установ-	-формирование целостной естественнонаучной картины мира с уче-
КИ	том достижений науки и техники в области нанотехнологий;
	- углубление знаний основного курса физики и повышение интереса
	к его изучению;
	-пробуждение интереса у обучающихся к исследовательской деятель-
	ности и инженерной работе в области нанотехнологий.
Основные задачи	- создать условия для развития познавательного интереса, интеллек-
программы	туальных и творческих способностей учащихся в процессе самостоя-
	тельного приобретения знаний с использованием различных источни-
	ков информации; - формировать общее представление о том, что такое нанотехнологии
	как отрасль науки и производства, и её потенциале для решения мно-
	гих проблем человечества с помощью высокоэффективных материалов, компонентов и систем;
	- показать междисциплинарный характер нанотехнологии как нового
	направления науки;
	- познакомить учащихся с основными направлениями и методами ис-
	следований в области нанотехнологий, а, также с достижениями и
	перспективами развития нанотехнологий;
	- формировать навыки научно-исследовательской деятельности;
	- развивать умение обучающихся самостоятельно работать с научны-
	ми текстами, используя навыки смыслового чтения;
	- воспитывать чувство ответственности за собственные действия;
	- формировать навыки самодисциплины и самоконтроля в ходе про-
	ведения исследований и создания различных проектов;
	- развивать умение коллективно решать поставленные задачи; -обучить принципам работы со сканирующим зондовым микроскопом
	-ооучить принципам расоты со сканирующим зондовым микроскопом NanoEducator;
	- формировать знания о фундаментальных принципах и физических
	эффектах, лежащих в основе применения нанотехнологий.
Ожидаемые ре-	В результате реализации данной программы обучающийся дол-
- sample Po	2 positionate pominonam Ammon upor puninti oog mionamen don

зультаты	жен знать/понимать:
	-физические основы нанотехнологий: масштабы наномира, основные
	представления квантовой механики, основные типы наноструктур;
	-методы получения и исследования наноструктур;
	-уникальные свойства наноструктур;
	-применение наноразмерных систем в электронике;
	-роль нанотехнологий в биологии, химии, технологии, медицине и
	других науках;
	-ближайшие перспективы нанотехнологий и их роль в нашей жизни.
	уметь:
	-организовывать поиск, анализ, отбор, преобразование, систематиза-
	цию, оценку и передачу необходимой информации, используя раз-
	личные источники;
	-использовать навыки смыслового чтения для работы с научными
	текстами;
	-владеть принципами работы со сканирующим зондовым микроско-
	пом NanoEducator;
	-решать учебные и самообразовательные проблемы;
	-оформлять, представлять и защищать результаты своих исследова-
	ний;
	-сотрудничать и работать в команде;
	-применять знания, полученные в ходе изучения курса, на уроках фи-
	зики, химии и биологии, информатики и др. для объяснения происхо-
	дящих вокруг процессов и явлений на уровне наномира.
Система органи-	
зации контроля	Плановый поурочный, тематический и итоговый контроль выполне-
•	ния программы осуществляет учитель, административная группа.
L	

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Существенная роль в изучении закономерностей развития природы и взаимодействия с ней человеческой цивилизации принадлежит естественным наукам. Особенно велика эта роль в нынешний век научного и технологического прогресса. Нанотехнологии, включающие в себя самые новые достижения физики, химии и биологии, - без сомнения в настоящее время самое инновационное направление развития науки и техники. Согласно указу Президента Российской Федерации от 7 июля 2011 г. N 899 «Об утверждении приоритетных направлений развития науки, технологий и техники в Российской Федерации и перечня критических технологий Российской Федерации» особое внимание уделяется направлениям, тесно связанным с развитием нанотехнологической отрасли. Новые технологически ориентированные отрасли промышленности требуют не только достаточно квалифицированных служащих из числа выпускников, но и грамотных потребителей современной продукции. Современные выпускники недостаточно готовы к жизни в нанотехнологичном обществе. Ведь в образовательных стандартах, учебниках, программах по химии, физике, биологии, математике нет разделов, посвященных нанотехнологиям. Важным аспектом образовательной и воспитательной деятельности образовательных учреждений различных уровней в РФ является развитие творческих способностей воспитанников, приобщение их к исследовательской работе и, в конечном результате, воспитание активной творческой личности.

Таким образом, актуальность данной программы состоит в следующем:

- программа элективного курса «Нанотехнологии» устранить информационный пробел в знаниях обучающихся, сформировать более высокий уровень естественнонаучной грамотности;
- помогает формировать у обучающихся навыки научно-исследовательской деятельности;
- проводит профориентационную работу в приоритетном для РФ направлении.

В данной программе реализован личностно-ориентированный и системно-деятельностный подход. Используются такие технологии как: ИКТ, интерактивные технологии, метод проектов.

Курс учитывает межпредметные связи с химией, биологией, информатикой и предполагает такие формы работы, как урок-практикум, лекция, семинар, экскурсия, зачёт в виде защиты проектных и исследовательских работ. Программа предполагает широкое использование ЭОР, ЦОР, медиатеки. Применяются такие формы контроля, как устный опрос (текущий контроль) и зачет в виде защиты проекта (итоговый контроль). После изучения каждого раздела обучающиеся заполняют «Индивидуальную карту развития» с целью формирования навыков самооценки, самоконтроля и систематизирующую таблицу по изученному материалу. Реализация программы эффективна при сочетании групповых и индивидуальных форм занятий.

На занятиях используются следующие **методы обучения:** объяснительный, иллюстративный, демонстрационный, поисковый, исследовательский, проектный.

В целом, программа может стать эффективным инструментом формирования целостной картины мира, метапредметных УУД, так как в основе всех нанотехнологических разработок лежат фундаментальные научные исследования в области различных дисциплин.

Отличительной особенностью программы курса «Нанотехнологии» можно считать следующее:

- возможность дистанционного обучения, благодаря использованию материалов онлайнкурса;
- стимулирование учебно-исследовательской и проектной деятельности школьников через применение авторских приемов работы с обучающимися;

- преобладание творческих форм работы, благодаря ведущей роли проектной и исследовательской деятельности и обучению в сотрудничестве;
- включение элементов занимательности в сочетании с научностью, создающее положительную мотивацию к освоению материала;
- применение авторских приемов работы с текстами технического содержания с целью формирования навыков смыслового чтения;
- применение карт индивидуального развития обучающимися с целью формирования навыков самоконтроля, самооценки и самоорганизации старшеклассников;
- создание базы для ориентации обучающихся в мире современных профессий;
- обеспечивает непрерывность профессионального образования «школа-ВУЗ».

ЦЕЛИ КУРСА

- формирование целостной естественнонаучной картины мира с учетом достижений науки и техники в области нанотехнологий;
- углубление знаний основного курса физики и повышение интереса к его изучению;
- формирование умения коллективно решать поставленные задачи;
- формирование личностных и метапредметных УУД;
- пробуждение интереса у обучающихся к исследовательской деятельности и инженерной работе в области нанотехнологий.

ЗАДАЧИ КУРСА

- создать условия для развития познавательного интереса, интеллектуальных и творческих способностей учащихся в процессе самостоятельного приобретения знаний с использованием различных источников информации;
- формировать общее представление о том, что такое нанотехнологии как отрасль науки и производства, и её потенциале для решения многих проблем человечества с помощью высокоэффективных материалов, компонентов и систем;
- показать междисциплинарный характер нанотехнологии как нового направления науки;
- познакомить учащихся с основными направлениями и методами исследований в области нанотехнологий, а, также с достижениями и перспективами развития нанотехнологий;
- формировать навыки научно-исследовательской деятельности;
- развивать умение обучающихся самостоятельно работать с научными текстами, используя навыки смыслового чтения;
- воспитывать чувство ответственности за собственные действия;
- формировать навыки самодисциплины и самоконтроля в ходе проведения исследований и создания различных проектов;
- развивать умение коллективно решать поставленные задачи;
- познакомить и обучить принципам работы со сканирующим зондовым микроскопом NanoEducator;
- формировать знания о фундаментальных принципах и физических эффектах, лежащих в основе применения нанотехнологий.

МЕСТО КУРСА «НАНОТЕХНОЛОГИИ» В УЧЕБНОМ ПЛАНЕ

Прикладной элективный курс «Нанотехнологии» знакомит учащихся с важнейшими путями и методами применения знаний на практике, развивает интерес к современной технике и производству в области нанотехнологий, способствует профессиональному самоопределению обучающихся. Данный курс дополняет курс физики в 9 классе, способ-

ствуя формированию целостной картины мира на разных уровнях размерности физических систем, обеспечивая непрерывность профессионального образования.

Метапредметность курса позволяет с единых позиций рассматривать различные процессы и явления, опираясь на знания физики, химии, биологии, математики, информатики, что способствует формированию общего научного мировоззрения.

Данный курс реализуется за счет часов части учебного плана МБОУ Школа № 9, формируемой участниками образовательных отношений. Программа рассчитана на 68 часов — 2 часа в неделю. Фактически (с учетом годового календарного графика на 2021-2022 учебный год и расписания занятий) - на 65 часов в год.

Контроль реализации программы осуществляется в форме устного опроса (текущий контроль) и защиты обучающимися проектных и исследовательских работ (итоговый контроль).

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ИЗУЧЕНИЯ КУРСА «НАНОТЕХНОЛОГИИ»

В результате реализации данной программы обучающийся должен знать/понимать:

- физические основы нанотехнологий: масштабы наномира, основные представления квантовой механики, основные типы наноструктур;
- методы получения и исследования наноструктур;
- уникальные свойства наноструктур;
- применение наноразмерных систем в электронике;
- роль нанотехнологий в биологии, химии, технологии, медицине и других науках;
- необходимость исследований, проводимых учёными в области нанотехнологий;
- ближайшие перспективы нанотехнологий и их роль в нашей жизни.

уметь:

- организовывать поиск, анализ, отбор, преобразование, систематизацию, оценку и передачу необходимой информации, используя различные источники;
- использовать навыки смыслового чтения для работы с научными текстами;
- владеть принципами работы со сканирующим зондовым микроскопом NanoEducator;
- решать учебные и самообразовательные проблемы;
- оформлять, представлять и защищать результаты своих исследований;
- сотрудничать и работать в команде;
- применять знания, полученные в ходе изучения курса, на уроках физики, химии и биологии, информатики и др. для объяснения происходящих вокруг процессов и явлений на уровне наномира.

Важно, что при организации учебного процесса учитель может варьировать виды и формы занятий, придерживаясь содержания, объёма и порядка изучения материала.

СОДЕРЖАНИЕ КУРСА «НАНОТЕХНОЛОГИИ».

I. Введение (2 ч).

- 1. История значимых событий в развитии нанотехнологий.
- 2. Положение нанообъектов на шкале размеров.
- 3. Ричард Фейнман пророк нанотехнологической революции.

II. Нанотехнологии вокруг нас (6 ч).

- 1. Нанокомпьютеры и нанороботы.
- 2. Космический лифт.
- 3. Нанопорошки и нанопокрытия. Литография. Рисунки в нанотехнологиях.
- 4. Междисциплинарные аспекты нанотехнологий.

III. Наночастицы и наноструктуры (8 ч).

- 1. Классификация наноструктур.
- 2. Наночастицы и нанокластеры.
- 3. Роль поверхностных атомов.
- 4. Магические числа.
- 5. Углеродные наноструктуры. Углеродные нанотрубки-материал будущего.
- 6. Нанокомпозиты, нанопористые и нанофазные материалы.

IV. Методы получения и исследования наноструктур (10 ч).

- 1. Общие характеристики физических методов.
- 2. Пути создания нанообъектов: технологии «сверху вниз» и «снизу-вверх».
- 3. Самоорганизация и самосборка в нанотехнологиях.
- 4. Электронная микроскопия.
- 5. Прозондируем наномир. Сканирующая туннельная микроскопия.
- 6. Атомно-силовая микроскопия.

V. Квантовая физика и наноструктуры (11 ч).

- 1. Электромагнитные волны.
- 2. Квантовые свойства излучения фотоны.
- 3. Гипотеза де Бройля.
- 4. Соотношения неопределённостей.
- 5. Квантовые представления об атоме.
- 6. Кристаллы и энергетические зоны.
- 7. Потенциальные яма и барьер.
- 8. Туннельный эффект.
- 9. Квантовые ямы, точки, проволоки.

VI. Уникальные свойства наноструктур (7 ч).

- 1. Число «ближайших соседей» в наночастице.
- 2. Механическая прочность нанотрубок.
- 3. Температура плавления наночастиц.
- 4. Электросопротивление наноструктур.
- 5. Магнетизм наноструктур.
- 6. Цвет наночастиц.
- 7. Сверхнизкие температуры и нанообъекты.

VII. Наноэлектроника (9 ч).

- 1. Наноэлектроника и тенденции ее развития.
- 2. Одноэлектронное туннелирование.
- 3. Резонансное туннелирование.
- 4. Спинтроника.
- 5. Сверхпроводниковая электроника.
- 6. Нанокомпьютеры и квантовые компьютеры.
- 7. Нанотехнологии в оптоэлектронике.

VIII. Нанобиотехнологии (6 часа).

- 1. Нанотехнологии в природе.
- 2. Гекконы, мидии и суперклей.
- 3. Биокомпьютеры.
- 4. Нанобиореакторы.
- 5. Нанокапсулы.
- 6. Проблема безопасности наноматериалов и нанотехнологий.

- 7. Ближайшие перспективы нанотехнологий (3 час).
- 8. Защита проектов (3 час).

КАЛЕНДАРНО-ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ С ОПРЕДЕЛЕНИЕМ ОСНОВНЫХ ВИДОВ УЧЕБНОЙ ДЕЯТЕЛЬНОСТИ

	Да	та			
$\mathcal{N}_{ar{\mathcal{Q}}}$	по плану	изменения	Тема	Основное содержание	Характеристика основных видов деятельности обуча- ющегося
	•	•		Введение (1 час)	
1.	6.09.18		Введение в нанотехнологии	История значимых событий в развитии нанотехнологий. Положение нанообъектов на шкале размеров. Ричард Фейнман – пророк нанотехнологической революции.	Знакомятся с основными понятиями в области нанотехнологий. Узнают о порядке размеров нанообъектов. Рассматривают причины развития нанотехнологий, три этапа НТР. Приводят примеры значимых событий в развитии нанотехнологий.
	•		Наноте	хнологии вокруг нас (4 часа)	
2.	13.09.18		Нанокомпьютеры и нанороботы.	Эрик Дрекслер и его книга «Машины созидания». Использование компьютеров для моделирования наноматериалов и наноустройств в виде объемных компьютерных моделей.	Знакомятся, на основе каких материалов в настоящее время ведется разработка памяти и процесса вычислений нанокомпьютеров. Получают представление обустройстве и работе полупроводникового транзистора, используемого в качестве элемента памяти современного компьютера. Выясняют отличие ассемблеров и дизассемблеров.
3.	20.09.18		Нанопорошки и нанопо-	Нанопорошки и нанопокрытия. Литография.	Приводят примеры примене-

			крытия. Литография. Рисунки в нанотехнологиях.	Рисунки в нанотехнологиях. Что такое туннельный микроскоп. Работа в лаборатории ИНЭП ЮФУ «Технология фотолитографии», «Силовая нанолитография».	ния нанопорошков и нанопокрытий в быту, технике. Описываютпроцесс создания рисунков в нанотехнологиях.
4.	27.09.18	F	Космический лифт.	Космический лифт.	Знакомятся с идеями, выдвинутыми К.Э. Циолковским для освоения космического пространства. Выдвигают гипотезы для решения технических проблем, возникающих при создании космического лифта и выполнять необходимые для решения этих проблем расчеты, используя известные законы физики.
5.	4.10.18		Междисциплинарные ас- пекты нанотехнологий.	Нанотехнологии в быту и в военном деле.	Приводят примеры использования нанотехнологий при создании военной техники, умной одежды. Приводят примеры наиболее эффективного использования нанотехнологий в быту. Узнают, на каких физических принципах основан эффект «невидимости» самолетов. Выдвигают и обосновывают гипотезы о возможностях применения нанотехнологиях в различных отраслях науки и техники, в быту.
			Ha	ночастицы и наноструктуры (4 часа)	<u> </u>
6.	18.10.18		Классификация нано- структур.	Классификация наноструктур.	Получают представление о классификации нанострук-

				тур. Знакомятся с основной отличительной особенностью наноматериалов от традиционных материалов. Приводят примеры изготовления и применения наноматериалов в прошедших столетиях. Выясняют, что понимают под нанокомпозитным (нанопористым) материалом и приводить примеры таких материалов, указывая области их применения. Осуществляют в интернете поиск информации.
7.	25.10.18	Наночастицы и нанокластеры. Роль поверхностных атомов. Магические числа.	Наночастицы и нанокластеры. Роль поверхностных атомов. Магические числа.	Знакомятся с понятиями: наночастицы и нанокластеры. Выясняют роль поверхностных атомов. Магические числа.
8.	1.11.18	Углеродные наноструктуры.	Особая роль углерода в наномире. Графен – слой графита. Фуллерены – наношарики из углерода. Фуллерен С60. Углеродные нанотрубки – трубки из графена. Свойства и применение нанотрубок. Способы получения фуллеренов и углеродных нанотрубок. Что такое туннельный микроскоп. Работа в лаборатории ИНЭП ЮФУ «Выращивание углеродных нанотрубок».	Знакомятся с особенностями углеродных наноструктур, основами туннельной микроскопии, свойствами, способами выращивания и применением нанотрубок.
9.	8.11.18	Нанокомпозиты, нанопористые и нанофазные материалы.	Нанопроволоки. Композиты.	Знакомятся с понятиями: Нанокомпозиты, нанопористые и нанофазные материалы и способами их получения.

		Методы получе	ния и исследования наноструктур (6 часов)	
10	15.11.18	Общие характеристики физических методов.	Можно ли увидеть молекулы в оптический микроскоп? Первый нанотехнолог Левша и его «мелкоскоп».	Получают знания об общих характеристиках физических методов.
11	11 29.11.18 Пути создания нанообъектов.		Технологии «сверху - вниз» и «снизу-вверх».	Выясняют суть технологий создания нанообъектов: технологии «сверху - вниз» и «снизу-вверх».
12	6.12.18	Самоорганизация и самосборка в нанотехнологиях.	Самоорганизация и самосборка в нанотехнологиях.	Изучают принципы, технологии и методики создания трехмерно упорядоченных структур из нанообъектов.
13	13.12.18	Электронная микроскопия	Сканирующий электронный микроскоп. Что такое туннельный микроскоп. Работа в лаборатории ИНЭП ЮФУ «Растровая электронная микроскопия»	Получают навыки работы с растровым электронным микроскопом.
14	20.12.18	Сканирующая туннельная микроскопия. Что такое туннельный микроскоп. І боратории ИНЭП ЮФУ «Сканирук вая микроскопия».		Знакомятся с возможностями СЗМ «NanoEducator»
15	27.12.18	Атомно-силовая микроскопия.	Как атомно-силовая микроскопия чувствует прикосновение атомов. Работа в лаборатории ИНЭП ЮФУ «Технология вакуума. Напыление пленок».	Знакомятся с принципом работы атомно-силового микроскопии и технологией напыления пленок.
		Квантова	ая физика и наноструктуры (5 часов)	
16	. 10.01.19	Электромагнитные волны. Квантовые свойства излучения фотоны. Гипотеза де Бройля.	Электромагнитные волны. Квантовые свойства излучения и волновые свойства частиц. Гипотеза де Бройля.	Используют знания курса
17	. 17.01.19	Соотношения неопределённостей.	Соотношения неопределённостей.	физики для изучения нано- структур. Знакомятся с принципами
18	. 24.01.19	Квантовые представления об атоме.	Квантовые представления об атоме.	получения фиксированного ионного пучка.
19	. 31.01.19	Кристаллы и энергетические зоны.	Энергетические зоны кристаллов.	

20.	7.02.19	Потенциальные яма и барьер. Квантовые ямы, нити, точки. Туннельный эффект.	Ямы, барьеры, туннели, ящики и нити – квантовые явления и структуры. Работа в лаборатории ИНЭП ЮФУ «Фокусированный ионный пучок"	Получают представление о понятиях: ямы, барьеры, туннели, ящики и нити — квантовые явления и структуры.
	l l	Уникаль	ные свойства наноструктур (5 часов)	13 31
21.	14.02.19		Изменение механических, тепловых, электромагнитных и оптических характеристик в	Используют знания физики
22.	28.02.19	Число «ближайших соседей» в наночастице. Механическая прочность нанотрубок. Температура плавления наночастиц.	дей» в наночастице. Ме- ханическая прочность нанотрубок. Температура благодаря большой доле поверхностных ато-	
23.	7.03.19	Электросопротивление наноструктур.	Причины малого электросопротивления наноструктур.	Выясняют причины малого электросопротивления наноструктур.
24.	14.03.19	Магнетизм наноструктур.	Магнетизм наноструктур.	Выясняют причины магнетизма наноструктур.
25.	21.03.19	Цвет наночастиц. Сверхнизкие температуры и нанообъекты.	Какого цвета наночастицы? Предельная температура существования нанообъектов.	Получают представление о цвете и предельной температуре существования нанообъектов.
		На	аноэлектроника (3 часа)	
26.	28.03.19	Наноэлектроника и тенденции ее развития.	Наноэлектромеханические системы (НЭМС). Создание чрезвычайно чувствительных измерительных устройств. Как природа помогает нанотехнологам создавать (НЭМС). Наноавтомобиль — первая движущаяся управляемая наносистема.	Знакомятся с основами нано- электроники на примере наноавтомобиля. Создают модель наноавтомобиля.
27.	11.04.19	Туннелирование. Спинтроника. Сверхпроводниковая электроника.	Одноэлектронное и резонансное туннелирование. Закон Мура. Спинтроника – вычислительные процессы на вращающихся электронах. Применение сверхпроводников в электронике. Резонансно -туннельные транзисто-	Получают представление о видах туннелирования, сути и применении закон Мура. Знакомятся с понятием: спинтроника.

28.	18.04.19	Нанокомпьютеры и квантовые компьютеры. Нанотехнологии в оптоэлектронике.	ры. Транзистор на квантовых точках. Спиновый транзистор. Нанокомпьютеры и квантовые компьютеры. Нанотехнологии в оптоэлектронике. Нанотрубки в электронике. Одноэлектронный выключатель и транзистор. Энергосбережение в наноэлектронике. Нанокомпьютеры и квантовые компьютеры. Новые материалы для создания запоминающих устройств. Работа в лаборатории ИНЭП ЮФУ «Резка пластин. Создание микрочипов».	Выясняют возможности применения сверхпроводников в электронике. Знкомятся с принципом действия нанокомпьютеров и квантовых компьютеров, применением нанотехнологий в оптоэлектронике. Выясняют принципы создания микрочипов.
	-		Нанобиотехнологии (3 часа)	
29.	25.04.19	Нанотехнологии в природе.	«Эффект лотоса» и его применение в быту и технике.	Выясняют причину само-очищения листа лотоса и приводят примеры применения эффекта лотоса.
30.	2.05.19	Гекконы, мидии и супер- клей.	Нановолокна. Применение нового материала «гекель» в разных областях человеческой деятельности.	Выясняют возможности применения нового материала «гекель» в разных областях человеческой деятельности.
31.	16.05.19	Биокомпьютеры. Нанобиореакторы. Нано- капсулы. Проблема без- опасности наноматериа- лов и нанотехнологий.	Нанобиороботы, нанобиореакторы и биоком- пьютеры в медицине. Двоичная система счис- ления и изменение цвета бактерий с зеленого на красный (или наоборот) при изменении ге- нетического кода. Использование программи- руемых бактерий в медицине для прогнозиро- вания болезней. Нанобиореактор и революция в микроэлектронике. Создание нанолекарств. Наноматериалы и нанотехнологии и их без- опасность.	Узнают, какие функции могут выполнять нанороботы в медицине и оценивают реальность таких возможностей. Оценивают безопасность наноматериалов и нанотехнологий для человека и биоорганизмов.
			ие перспективы нанотехнологий (1 час)	1
32.	16.05.19	Ближайшие перспективы нанотехнологий	Нанотехнологии – универсальное средство производства продуктов потребительского и	Выявляют ближайшие перспективы развития нанотех-

				промышленного назначения. Социально- экономические последствия НТР.	нологий в РФ и в мире.	
	Защита проектов (1 час)					
33.	23.05.19		Защита проектов	Презентация проектов и исследовательских работ учащихся, обсуждение, дискуссии.	Представляют результаты проектных и исследовательских работ.	

Учебно-методическое обеспечение программы

- 1. АлфимоваМ. М. Занимательные нанотехнологии/ М. М. Алфимова.–М.: БИНОМ, 2011.
- 2. Белая книга по нанотехнологиям / под ред. В. И. Аржанцева идр. М.: Изд-во ЛКИ, 2008
- 3. Богданов К. Ю. Что могут нанотехнологии / К. Ю. Богданов. М., Просвещение, 2009.
- 4. Зубков Ю.Н., Кадочкин А.С., Козлов Д.В., Нагорнов Ю.С, Новиков С.Г., Светухин В.В., Семенцов Д.И.Введение в нанотехнологии. Модуль «Физика». Учебное пособие для учащихся 10–11 классов средних общеобразовательных учреждений. СПб: Образовательный центр «Участие», Образовательные проекты, 2012. (Серия «Наношкола»).
- 5. Рыбалкина М. Нанотехнологии для всех. Большое в малом / Мария Рыбалкина. Nanonews.net.ru, 2005.
- 6. Сыч В.Ф., Дрождина Е.П., Санжапова А.Ф. Введение в нанобиологию и нанобиотехнологии. Учебноее пособие для учащихся 10-11 классов средних общеобразовательных учреждений. СПб: Образовательный центр «Участие», Образовательные проекты, 2012 (Серия «Наношкола»).

Учебно-методическое и материально-техническое обеспечение образовательного процесса

Перечень №1

Литература для учителя

- 1. Богданов К.Ю. Что могут нано-технологии. М: Просвещение, 2009.
- 2. Дрекслер Э. Машины созидания: грядущая эра нанотехнологий.
- 3. Зубков Ю.Н., Кадочкин А.С., Козлов Д.В., Нагорнов Ю.С, Новиков С.Г., Светухин В.В., Семенцов Д.И. Введение в нанотехнологии. Модуль «Физика». Учебное пособие для учащихся 10–11 классов средних общеобразовательных учреждений. СПб: Образовательный центр «Участие», Образовательные проекты, 2012. 160 с. (Серия «Наношкола»).

Перечень №2

Электронные издания, образовательные ИКТ-ресурсы

- 1. http://schoolnano.ru/node/4655
- 2. http://www.nanometer.ru/
- 3. http://edunano.ru/view_doc.html?mode=home
- 4. www.portalnano.ru
- 5. www.ntmdt.ru
- 6. www.microscop.ru

Перечень №3

Технические средства обучения

- 1. Рабочее место учителя: компьютер, экран, Internet.
- 2. Рабочее место ученика: компьютер, колонки, наушники, Internet.
- 3. Оптические и электронные микроскопы.
- 4. Сканирующий зондовый микроскоп NanoEducator.